上文提到演講中還有一個非常有趣的體驗,想表達的是將「不確定性」轉變成了「風險」的技巧。
Andrew Lo設定了兩個賭局,「純粹風險」與「不確定性」。
「純粹風險」的賭局:
有一個裝著紅球與黑球(比例各佔50%)的盒子,隨機抽一個球,若抽出來的與你所選的一樣顏色,你可以獲得$10,000美元,不過每人只有一次下注機會,問觀眾願意下注的上限是多少?
結論是觀眾中最高的下注上限為$4,500-$5,000之間,而大部份人都願意下較高的注,他認為這很合理,原因是每個人都有其 Expected Value/ 期望值,而願意承受風險往往是因為有高於期望值的回報。
「不確定性」的賭局:
有一個裝著紅球與黑球(比例由莊家自行分佈)的箱子,同樣隨機抽一個球,若抽出來的與你所選的一樣顏色,你同樣可以獲得$10,000美元,每人仍然只有一次下注機會,問觀眾這次願意下注的上限是多少?並說出選的是什麼顏色。
其中一個觀眾回答選了紅色,Andrew Lo問道:「為何選擇紅色?是否因為你喜歡紅色?還是你認為對方喜歡紅色?‧」然後他要求觀眾舉手投票下注上限,發現下注較高的人很少,而當中只有一個人跟第一局的下注相同。
Andrew Lo解釋說,儘管大家都不知道紅球與黑球的比例,但就機率而言,紅球與黑球出現的機率仍然是50%,兩個賭局賭的其實沒有分別,因此每人在下注的決定應該是一樣的,但就他的經驗而言,即使他說明了機率是一樣,普遍人都不敢於第二局下一樣的注。
這就是他說明「Physics Envy」的要點 - 人性因素。
有觀眾反駁說:「雖然機率是一樣,但這明顯是一個心理問題,實際上比例是莊家決定的,若然他猜中我的喜好,他可以放入完全跟我喜好相反的比例(例如我選紅色,他就全放入黑球),最終我還是會輸,所謂的期望值也沒有意義。」
Andrew Lo解釋說:「其實雙方都是猜測,莊家會猜你的喜好,你亦會猜莊家的喜好。莊家會想到「你會跟據我的喜好而選擇」,也可能是一個陷阱。」
然後觀眾問,若然你必須參與這個賭局,你會使用怎樣的策略,令莊家不會在你心理情緒被影響之下而猜中你的喜好?
Andrew Lo回答說:「可以用隨機策略,以隨機來打亂隨機,若你用「擲銀仔」的方法來決定所選顏色,這樣莊家就永遠猜不透,在這樣的情況下,莊家將紅球與黑球比率分佈為50%是最安全的做法,最終對你對他都變得公平與安全了。」
股票作手經常提及風險管理,當中的考慮因素到底是屬於「不確定性」、「風險」、還是只是「心理問題」呢?在「管理」之前,很值得大家細心思考,而將「不確定性」轉變成「風險」的探討,下文再續。